Determination of Supersonic Panel Flutter of Cylindrical Shells With In-Plane Stresses

Herbert Saunders General Electric Co., Missile & Space Vehicle Dept., Philadelphia, Pa. July 16, 1962

In a recent paper, Holt and Strack¹ present a formula based on the piston theory for determining the minimum thickness necessary to prevent panel flutter of cylindrical shells for M>2. Hedgepeth² has presented a method of utilizing the piston theory for rectangular, simply supported plates. The piston theory has been utilized by a number of authors.^{3, 4}

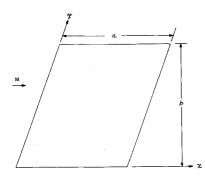


Fig. 1. Flat plate with aspect ratio b/l subjected to velocity flow.

Consider a flat plate (Fig. 1), with the flow as shown. For a cylindrical full panel (Fig. 2), $b=2\pi r$. From Hedgepeth's paper,² the critical dynamic pressure λ is given as

$$\lambda_{cr} = 2qa^3/\beta D \tag{1}$$

.where

 $q = \text{dynamic pressure} = (1/2)\rho u^2$

 $\beta = \sqrt{M^2 - 1}$

 $D = \text{plate stiffness} = Eh^3/12(1 - \mu^2)$

 μ = Poisson ratio

 $M = Mach number = \mu/c$

c = speed of sound

Substituting into Eq. (1) and simplifying,

$$\lambda_{cr} = \rho c^2 M^2 a^3 / D \sqrt{M^2 - 1} \tag{2}$$

Since

$$c^2 = \gamma P/\rho$$

then

$$\lambda_{cr} = M^2 a^3 \gamma P / D(M^2 - 1)^{1/2} \tag{3}$$

If one considers the cylinder to be stretched out to a plate and if $b\gg l$, this may be considered as a plate with an infinite aspect ratio. From Hedgepeth, 2 $\lambda_{cr}=341$. If no midplane stresses are considered and substituting for λ_{cr} and D in Eq. (3), the following results:

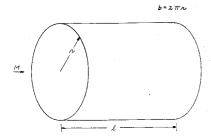


Fig. 2. Cylindrical shell subjected to velocity flow.

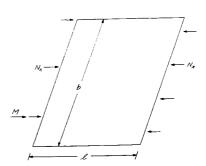


Fig. 3. Flat plate subjected to velocity flow with in-plane stresses.

$$\frac{h}{l} = 0.3276 (1 - \mu^2)^{1/3} \left(\frac{\gamma P}{E}\right)^{1/3} \frac{M^{2/3}}{(M^2 - 1)^{1/6}} \tag{4}$$

This compares favorably with Holt and Strack¹ for a cylinder with simply supported ends—viz.,

$$\frac{h}{l} = 0.3218 (1 - \mu^2)^{1/3} \left(\frac{\gamma P}{E}\right)^{1/3} \frac{M^{2/3}}{(M^2 - 1)^{1/6}}$$
 (5)

Eq. (3) can be further extended to multilayer cylinders. Should in-plane stresses be considered (Fig. 3), Hedgepeth² derives certain parameters namely \overline{A} and R_x where

$$\overline{A} = \overline{R}_x - 2(l/b)^2 \tag{6}$$

$$\overline{R}_x = R_x/\pi^2 = N_x l^2/D\pi^2$$
 (7)

Substituting Eq. (7) into Eq. (6)

$$\overline{A} = \frac{N_x l^2}{D\pi^2} - 2(l/b)^2 \cong \frac{N_x l^2}{D\pi^2}$$
 (8)

where $N_x = F/a$ (force/unit span and the compressive force is considered positive).

Utilizing the same previous assumptions then Eq. (4) is modified to

$$\frac{h}{l} = K(1 - \mu^{2})^{1/3} \left(\frac{\gamma P}{E}\right)^{1/3} \frac{M^{2/3}}{(M^{2} - 1)^{1/6}}$$
(9)

where K is tabulated in Table 1.

Table 1.	
A	K
-6	0.2405
-4	0.2601
-2	0.2873
0	0.3276
$\overline{2}$	0.3977
$\frac{-}{4}$	0.5913

In determining the minimum thickness necessary for in-plane stresses, calculate the effective thickness by Eq. (4). If the in-plane stresses are low, this thickness may be sufficient. If F or N_x is large, determine A from Eq. (8) and determine K from Table 1. Determine h from Eq. (9).

REFERENCES

- ¹ Holt, M., and Strack, S. L., Supersonic Panel Flutter of a Cylindrica Shell of Finite Length, Journal of the Aerospace Sciences, Vol. 28, No. 3, March 1961.
- ² Hedgepeth, J. M., Flutter of Rectangular Simply Supported Panels at High Supersonic Speeds, Journal of the Aeronautical Sciences, Vol. 24, No. 8, Aug. 1957.
- ³ Chawla, J., Aeroelastic Instablity at High Mach Numbers, Journal of Aerospace Sciences, Vol. 25, pp. 246, April 1958.
- ⁴ Morgan, H. G., Runyan, H. L., and Huckel, V., Theoretical Consideration of Flutter at High Mach Numbers, Journal of Aeronautical Sciences, Vol. 25, No. 6, June 1958.